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A high-throughput method for rapid screening of in vitro drug-brain homogenate binding is presented. The
method is based on a straightforward sample pooling approach combining equilibrium dialysis with liquid
chromatography mass spectrometry (LCMS). A strong correlation of fraction unbound in brain (fu) between
single compound measurements and 25-pooled compounds (R2 ) 0.906) was obtained for a selection of
structurally diverse CNS compounds with a wide range of fractions unbound. Effects of brain homogenate
dilution and dialysis time were investigated. To the best of our knowledge, it was the first time that we have
demonstrated consistent fraction unbound in mouse and rat brain homogenate, revealing the drug-tissue
partitioning mechanism predominated by hydrophobic interaction. On the basis of this finding, a generic
approach to estimate drug binding to various tissues is proposed. A robust and interpretable QSAR forfu
prediction is also presented by statistical modeling.

1. Introduction
Achieving a high extent of central nervous system (CNS)

exposure is an important focus for CNS drug discovery.1,2 Brain
to plasma ratio (Kp) has been widely used in CNS drug discovery
to indicate whether a drug has good brain penetration. Also,
many computational models employKp or log BB (log ratio of
blood to brain) as a key parameter to assess brain permeation.3-8

However, the relevance for pharmacodynamics of blood-brain
barrier penetration as expressed by log BB has been ques-
tioned.9,10 Recent studies have clearly demonstrated that a
compound such as sulpiride, having aKp value as low as 0.15
in wild-type mice, can still be a successful CNS drug,11

suggesting that it is difficult to assess the relevance and
implications of brain penetration solely on the basis of total
brain to plasma ratio (Kp) at steady state. Alternatively, it has
been proposed to use unbound brain to unbound plasma ratio
(Kp-unbound) to describe brain penetration, since the unbound
brain to plasma ratio rather than the total brain to plasma ratio
reflects a partitioning between brain and plasma, which usually
is pharmacologically more relevant.1 Summerfield et al. pre-
sented improved in vitro prediction of in vivo CNS penetration
by integrating permeability, P-glycoprotin efflux, and fractions
unbound in blood and brain.13 Kalvass and co-workers recently
demonstrated that the unbound brain to plasma ratio provides a
simple alternative means for assessing the CNS distribution of
drug independent of the mechanisms involved.14 This is
consistent with the “unbound drug hypothesis”, since, for most
if not all CNS targets, unbound brain concentration drives the
in vivo pharmacological effect. Consequently, the determination
of in vitro brain tissue binding (fu) in connection with measure-
ments of total exposure is indispensable to evaluate in vivo
pharmacological effects as well as to assess brain penetration
for CNS targets.

Currently, the main technique applied for measuring the
fraction unbound in brain tissue still relies on equilibrium

dialysis using brain homogenates, although several other
methods have been utilized.15 The dialysis-based assay is
considered to be an accurate method for fraction unbound
measurement, but it is hampered by a very low throughput.
Accordingly, the development of a more high-throughput
method for the screening of brain tissue binding would be highly
desirable.

In this context, we present a high-throughput approach to
screen brain homogenate binding which will benefit CNS-related
drug discovery projects. A robust QSAR model was developed
to enable to predict brain tissue binding.

2. Methods and Materials
2.1. Brain Tissue Homogenates and Sample Preparation.

Brain tissue homogenate samples were prepared by diluting one
volume of the whole brain tissue with three volumes of buffer (100
mM sodium phosphate, pH 7.4), and the mixture was homogenized
using an ultrasound probe. Fresh brain homogenates were ready
for dialysis, and the rest of the homogenates were frozen at-20
°C for later comparison. Usually, the brain tissues from three or
more individual mice were pooled to obtain reproducibility in the
tissue components.

A test set of commercial CNS drug compounds with a wide range
of physicochemical properties was employed for this study (see
Table 1). The selection of compounds was based on published data
as well as in-house data from AstraZeneca (AZ). Two other
compounds, verapamil and 5,5-diethyl-1,3-diphenyl-2-aminobar-
bituric acid, were used as volume markers in the LCMS analysis.
A group of AZ compounds with one or two basic pKa values was
included for the QSAR model study. A solution consisting of 0.5
mM compound in DMSO was used as stock solutions, and 10µL
of stock solution was added to 1 mL of homogenate to yield a
compound concentration of 5µM in the homogenates. Three
portions of 200µL volume each were used for dialysis (triple
samples), and 50µL of homogenate was stored in the 96-well
analysis plate in a freezer for recovery analysis later. The rest of
the 350µL was used for a stability test along with the dialysis
samples. The sample pooling approach is similar to the single
compound measurement by mixing of compounds in 10 mM DMSO
stocks, yielding an individual compound concentration of 0.5 mM,
including one reference standard (propranolol) as quality control.
In the case of pooling 25 compounds, a concentration of 4µM for
each compound in the homogenate was employed.
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2.2. Equilibrium Dialysis. Equilibrium dialysis was carried out
on a laboratory-made chamber consisting of two symmetric
plexiglass halves, a volume of 250µL, and a semipermeable
membrane with a molecular cutoff of 5 kDa (Dianorm GmbH
D-81215 München, Germany) between the two halves. The
membranes were first washed with water and then soaked in buffer
for 30 min before being placed in the dialysis cells. A 200µL
volume of buffer was added into one side of the chamber and an
equivalent volume of homogenate with spiked compounds (4-5
µM of each compound in homogenate) was added to the other side
of the membrane. For comparison of the effect of dialysis time,
the compounds were dialyzed 4.5 h and overnight (approximately
20 h) at 37( 1 °C in an air incubator. A 50µL volume from the
buffer side (representing the unbound concentration) and an
equivalent sample volume from the homogenate side (representing
the total concentration) were transferred from the dialysis cells to
a 96-deep well plate for LCMS analysis.

2.3. HPLC Separation and Mass Spectrometry Detection.A
Waters Acquity UPLC integrated LC system (Waters Sweden Inc.,
Sollentuna, Sweden) was used for all HPLC separations. All sample
preparations were carried out on a TECAN GenMate 96 needle
pipetting robot (TECAN Switzerland AG, Ma¨nnedorf, Switzerland).
A Waters Acquity 1.7µm, 2.1× 50 mm analytical column (Waters
Sweden Inc.) and an HPLC gradient was used as follows. The linear
gradient runs from 0 to 5 min by mixing mobile phase A (5% ACN
and 95% H2O) containing 0.2% of formic acid in deionized water
and mobile phase B (95% ACN and 5% H2O) containing 0.2%
formic acid. The flow rate was 0.7 mL/min and the integrated
column heater was set at 40°C.

A Waters MicroMass LCT Premier TOF mass spectrometer (run
in ESI+ and W-mode with extended dynamic range) was used for
detection with the software Masslynx 4.0 and Quanlynx 4.0 for
data acquisition and quantitation, respectively (Waters Sweden Inc.).
Source temperature, 120°C; desolvation temperature, 450°C; cone
gas flow, 100 L/h; desolvation gas flow, 1000 L/h; resolution,
10 000; reference scan frequency, 50; scan duration, 100 ms; and
interscan delay, 20 ms.

2.4. LCMS Bioanalysis Procedure.The dialyzed samples were
precipitated to remove tissue, and the supernatant was analyzed by

LCMS. The following three solutions were used in the sample
preparation: Solution 1: acetonitrile containing 0.1µM of volume
markers verapamil and 1.0µM 5,5-diethyl-1,3-diphenyl-2-ami-
nobarbituric acid. Solution 2: deionized water containing 0.2%
(volume) of formic acid. Solution 3: dilution solution consisting
of 150 mL of acetonitrile, 150 mL of deionized water, and 200µL
of formic acid, respectively.

Both the 50µL of tissue homogenate and 50µL of buffer samples
were precipitated with 150µL of cold (4 °C) solution 1. The
samples were then mixed thoroughly in a multivortexer for 1 min
and centrifuged at an RCF of 3220 for 20 min. A 100µL portion
of supernatant from each sample was diluted with 50µL of solution
2. These samples are referred to as “nondiluted samples” (although
the sample preparation implies a 6-fold dilution). A 25µL volume
of such nondiluted samples was then transferred to the second 96-
well plate and diluted 10 times with solution 3. These samples are
referred as “10-times diluted samples”. A 25µL volume of such
10-times diluted samples was further diluted another 10 times in
the same way, yielding the third 96-well plate as “100-times diluted
samples”. All samples, i.e., the nondiluted and 10-times and 100-
times diluted samples, were then analyzed by LCMS.fu of the
homogenate (fu-hom) was calculated from the ratio of the buffer
side response to the homogenate side responses, taking into account
both linearity and dilution factors.

2.5. Calculation of Fraction Unbound (fu), Recovery, and
Stability. On the basis of a nonspecific binding relationship between
drug and tissue, fraction unbound (fu-tissue) for nondiluted tissue
can be recalculated from measuredfu in homogenate (fu-hom),16,17

without the necessity of knowing the identity or exact concentrations
of the tissue components, with the following equation

where fu-hom and Df represent the measured fraction unbound in
diluted homogenate and the dilution factor, respectively.

Recovery and stability were estimated using eqs 2 and 3:

Table 1. List of CNS Compounds and Their Physicochemical Properties and Fractions Unbound (fu) in Mouse and Rat Brain Tissuesa

fu%(pooling)

CNS
compounds mass

pKa,
CEMS

ClogP
(C-lab)

logD7.4
(in-house)

fu%(single):12

mouse, 4.5 h mouse, 4.5 h rat, 4.5 h mouse, 20 h

buspirone 386.26 7.8 2.185 2.61 22 20( 1.6 16( 1.4 7.2( 0.75
carbamazepine 237.10 n 2.19 1.77 12 17( 1.9 16( 1.8 17( 2.8
carisoprodol 261.18 n 2.341 2.4 20 42( 5.4 36( 3.9 31( 6.0
chlorpromazine 319.10 9.54 5.35 3.7 0.076 0.16( 0.018 0.12( 0.024 0.11( 0.055
citalopram 325.17 9.72 3.132 1.94 3 3.8( 0.24 3.4( 0.099 2.8( 0.38
clozapine 327.14 7.93/3.79 3.714 3.46 0.94 1.2( 0.075 1( 0.17 1.13( 0.20
cyclobenzaprine 276.17 9.69 5.097 2.92 0.73 0.65( 0.044 0.58( 0.024 0.34( 0.11
diazepam 285.08 3.55 2.99 3.53 5 4.2( 0.64 4.3( 0.5 3.5( 0.4
fluoxetine 310.14 10.2 4.26 2.84 0.22 0.25( 0.027 0.26( 0.016 0.18( 0.083
fluvoxamine 319.16 9.4 3.321 2.41 0.84 0.861( 0.097 0.79( 0.030 0.81( 0.22
haloperidol 376.15 9.02 4.28 0.18 0.71 1( 0.23 0.82( 0.10 0.3( 0.12
hydrocodone 300.16 8.43 1.126 3.38 55 55( 6.1 52( 9.2 41( 5.7
hydroxyzine 375.18 7.75 3.995 0.18 1 1.5( 0.071 1.3( 0.16 0.81( 0.15
lamotrigine 256.02 5.19 2.534 0.54 22 29( 0.93 25( 1.7 18( 4.3
methylphenidate 234.15 9.24 2.556 -0.15 22 30( 3.9 27( 2.9 12( 3.2
metoclopramide 300.15 9.59 2.62 3.31 31 46( 7.9 35( 8.2 26( 5.3
midazolam 326.09 5.44 3.27 2.50 2.7 2.6( 0.25 2.5( 0.042 1.7( 0.29
nortriptyline 264.17 10.41 4.04 2.23 0.46 0.42( 0.039 0.36( 0.020 0.26( 0.12
paroxetine 330.15 10.1 4.238 2.27 0.39 0.26( 0.029 0.26( 0.030 0.095( 0.002
propranolol 260.16 9.68 2.98 1.33 1.92 2.2( 0.3 2.0( 0.19 1.3( 0.17
risperidone 411.22 8.63/3.16 2.711 1.66 6.7 11( 1.1 8.7( 0.9 3.9( 0.5
selegiline 188.14 7.69 2.9 3.7 5.6 9( 1.1 7.4( 0.45 4.5( 0.79
trazodone 372.16 6.73 3.85 2.97 4.7 5.8( 0.42 4.4( 0.48 3( 0.081
venlafaxine 278.21 9.9 3.269 0.88 21 28( 4.8 22( 4 19( 3.5
zolpidem 308.18 6.02 3.026 2.35 20 21( 3.3 17( 3.7 13( 2.0

a n: neutral. 4.5 h and 20 h are dialysis times.fu%(single) is reference data12 measured with a single compound, except for propranolol;fu%(pooling) data
were measured in this work by pooling 25 compounds.

fu-tissue)
1/Df

(1/fu-hom - 1) + 1/Df

)
fu-hom

Df - (Df - 1)fu-hom

(1)
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2.6. Physicochemical Property Characterization.Lipophilicity
and ionization (pKa) of all compounds in Table 1 were measured.
Lipophilicty was estimated by an in-house assay based on a liquid
chromatographic retention approach using a C-18 column and a
gradient at pH 7.4. A group of compounds with known logD values
was employed for calibration. The pKa of the same set of
compounds was determined by CEMS, as previously described,18

with extended application of 14 buffers and on-line reference control
for accurate pKa screening.19,20 In general, the pKa values for most
of the compounds are well in line with those reported in the
literature,11 but some deviations were observed. For instance, two
pKa values were observed for clozapine and risperidone, and a pKa

of 9.24 versus the reported value of 10.6 was found for meth-
ylphenidate. Midazolam (5.44), lamotrigine (5.19), and diazepam
(3.55) show weak basic pKa values, while they were reported as
neutral. It should be noted that all compounds with pKa lower than
6 could be regarded as neutral compounds, since these compounds
exhibit nearly zero effective mobility at physiological pH 7.4.19,20

However, these weak pKa values should also be taken into account
when only the nonionized form is concerned.

2.7. Statistical Modeling. A variety of structural descriptors,
capturing both 2D and 3D molecular properties, were computed
using in-house developed software. The Pearson correlation coef-
ficient (r) was employed to reduce collinearity in the descriptor
set: if r was higher than 0.8 for a given descriptor pair, then the
descriptor that was more correlated with the unbound brain fraction
(fu) (i.e., that had the largest absolute value ofr) was retained. Two
data sets were used in the present study. The first one includes
108 compounds for which unbound brain fractions were measured
in either rat or mouse and was used for general statistical analysis.
The second data set is a subset of the first one and consisted of 70
compounds withfu measured in mice. It was divided into training
(65%, 56 compounds) and test (35%, 24 compounds) groups to
allow QSAR model derivation and evaluation, respectively. Several
data modeling techniques, developed through the R project,21 as
implemented in Pipeline Pilot,22 were employed to build statistical
models. These include multiple linear regression (MLR), partial
least-squares (PLS), principal component analysis regression (PCR),
neural networks (NN), and support vector machine (SVM) methods.

The internal consistency of the resulting models was evaluated
with randomization tests on both dependent and independent
variables and different types of cross-validation. These included
leaving one, five, and 10 observations out during model building.
The process was repeated 50 times in the case of leave-five and
leave-ten-out schemes. External predictivity was subsequently
evaluated by predicting the unbound brain fraction values for the
molecules in the test set. Additional measurements performed on
eight molecules after the models were built provided a further
prospective test.

3. Results and Discussion

3.1. Sample Pooling Based on Reversible and Nonspecific
Binding and/or Partitioning. In our previous work, we have
demonstrated the suitability of sample pooling for screening
drug-plasma protein binding from theoretical calculations and
measurements.23 Similar to the drug-protein binding, the drug
binding to tissue can be regarded as a rapid and reversible
equilibrium. Since the exact identity and concentration of
nonspecific binding components in brain tissue are unknown, a
nonlinear relationship betweenfu and binding component
concentration was used for back calculation offu for the original
tissue17 using eq 1. Equation 1 is derived on the basis of a one-

to-one binding model similar to drug protein binding24,25 by
means of eqs 4-6.

In these equations [D], [BD], and [DT] are the concentrations
of unbound drug, bound drug and total drug, respectively; [B]
is the binding component concentration, mainly phospholipid
concentration in the tissue; andKd andKa are the dissociation
constant and the corresponding association constant, which are
independent of the total drug concentration and the binding
component concentration in the brain tissue.

Equation 6 implies that the fraction unbound (fu) resembles
the partitioning between aqueous phase (buffer) and organic
phase (tissue lipids), being a function of the binding tissue
component concentration while independent of the total drug
concentration, which should be the case as long as the
concentration of tissue components is in large excess. Conse-
quently, the equilibrium of a particular compound out of pooled
compounds is expected to be the same as the equilibrium for a
single compound, provided that the pooled total drug concentra-
tion is still much lower than the lipid concentration. For a better
understanding of the sample pooling applicability, we can also
simulate thefu in homogenates using eq 7,25 where thefu is
associated only with the total drug [DT] and total binding
component concentrations [BT].

As illustrated in Figure 1, an increasing binding affinity
(enhanced partitioning) results in decreasedfu in general.
However, thefu is identical in the range of drug concentration
from 1 to 500 µM (case a) in 4-times diluted homogenate
(assumed total lipid concentration 17.5 M; cf. Figure 1). A
similar trend was obtained also for 20-times diluted homogenate
(lipid concentration was 3.5 mM) as long as the total drug
concentration is below 100µM (case b). These results could
be attributed largely to the fact that the lipid content in the
homogenate is much greater than the drug concentration, leading
to a consistentfu independence of drug concentration. To further
verify this theoretical model, and to demonstrate that sample
pooling is a viable approach for drug-tissue binding screening,
we conducted dilution experiments as well as the sample pooling
experiments.

3.2. Effect of Homogenate Dilution on Fraction Unbound.
Unlike plasma protein binding measurements, in vitro brain
tissue binding has to be carried out in diluted homogenates
adaptable for equilibrium dialysis. Thus, the fraction unbound
measured in diluted homogenates has become questioned.
Concerns have been raised that the dilution of tissue proteins
and alteration of tissue binding mechanisms may limit the
validity of this methodology.15 This urged us to examine whether
the dilution of brain tissue would influence the brainfu. For the

recovery (%)) 100× (responsehom + responsebuffer)after dialysis

(responsehom)before dialysis
(2)

stability (% )) 100× (responsehom)after incubation

(responsehom)before incubation

(3)

[D] + [B] S [BD] (4)

Kd ) 1
Ka

)
[D][B]

[BD]
(5)

fu )
[D]

[DT]
)

[D]

[D] + [BD]
)

Kd

[B] + Kd

)

(response)buffer

(response)tissue

≈ aqueous phase
organic phase

(6)

fu% ) 100- bound (%)) 100×
(Ka[DT] + Ka[BT] + 1) - x(Ka[DT] + Ka[BT] + 1)2 - 4Ka

2[BT][DT]

2Ka[DT]
(7)
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purpose of this study, we selected a mixture of diverse
compounds with a wide range of fraction unbound based on a
principal component analysis score. As shown in Table 2, the
dilution of tissue homogenate only minimally influencedfu
values. This result is in line with the assumption that drug and
tissue binding is governed by hydrophobicity. It was hypoth-
esized that the reversible macromolecular binding of drugs in
plasma and tissues is driven by the main binding molecules
present in these two matrices.26 As phospholipid concentration
are present in overwhelming excess,26 drugs may primarily
partition into phospholipids, while other macromolecules present
in tissue matrices would contribute insignificantly due to much
lower concentrations. Our data suggest that a nearly consistent
fu in brain tissue should be expected up to at least 20-fold tissue
dilution.

3.3. Effect of Dialysis Time on Fraction Unbound.For
practical reasons, we usually dialyze samples overnight (18-
20 h) for measurement offu for plasma protein binding as well
as brain homogenate binding. Other laboratories, however, have
used shorter dialysis times. We therefore compared the effect
of dialysis time on fraction unbound using mouse brain
homogenate. In comparison offu data dialyzed at 4.5 and 20 h,
it seems that fractions unbound measured at 4.5 h are somewhat
higher than those obtained from overnight dialysis for a majority
of compounds examined, nevertheless resulting in an overall
good correlation (Table 1). Recovery and stability of all
compounds were examined without significant differences
between 4.5 h and overnight. In general, a short dialysis time

of 4 h often attains equilibrium.24 However, compounds
requiring more than 6 h to reach equilibrium have also been
demonstrated.27 Our study based on the set of 25 compounds
suggests no significant difference offu between 4.5 and 20 h.
However, from the viewpoint of the best scientific performance
and practice, a longer dialysis time such as 20 h is often
conducted in our lab, unless stability data suggest otherwise.

Correlation of Brain fu between Single Compound Mea-
surement and Pooled Compounds.Table 1 summarizesfu data
measured by sample pooling (all 25 compounds pooled in one
sample) and conventional single compound measurement from
published data in mouse brain tissue. Figure 2 shows a strong
correlation (R2 ) 0.906,n ) 25) of fu between single compound
measurement and measurement of 25 pooled compounds. It
should be emphasized that the above correlation is based on
data generated from two different laboratories as well as slightly
different homogenate dilutions. As indicated in Figure 2, a 2-fold
difference infu was observed in the worst cases of chloropro-
mazine (with a basic pKa 9.54) and carisprodol (neutral), though
it does not seem that basic compounds tend to bind more to
phospolipid than neutral compounds. Such variability should
be acceptable for screening purposes. In addition, in order to
examine the potential ion suppression effect, a comparison of
the total 25 pooled compounds versus selectively pooled
compounds with baseline resolutions was made. A tight cor-
relation (R2 ) 0.9651,n ) 25) was obtained between all 25
pooled compounds and selected pooled compounds, indicating
that overlapped peaks or incomplete chromatographic resolutions

Figure 1. fu independent of drug concentration in diluted brain homogenate. Calculations based on eq 7, where a wide range of drug concentrations
from 1 to 500µM was used. (a) four-time diluted homogenate; an assumed binding component concentration of 17.5 mM for neutral lipid and
phospholipid was used forfu calculation. (b) Twenty-time diluted homogenate, corresponding to 3.5 mM phospholipid used forfu calculation,
demonstrates that a number of compounds could be pooled withfu independent of drug concentration from the theoretical binding model. Fractional
content of wet tissue weight is 0.05 in mouse tissue and 0.053 in rat tissue.26 Simply taking into account only the amount of phospholipids and an
average molecular weight of 700 in the brain tissue, the molar concentration of phospholipids in the brain tissue is approximately 71 mM.

Table 2. Independence offu on Mouse Brain Tissue Homogenate Dilutiona

fu%

compound 4-times 8-times 10-times 12-times 16-times 20-times

chlorpromazine 0.11( 0.037 0.089( 0.019 0.1( 0.022 0.078( 0.024 0.074( 0.008 0.123( 0.04
haloperidol 0.28( 0.07 0.29( 0.08 0.27( 0.07 0.25( 0.097 0.23( 0.037 0.4( 0.12
diazepam 3.1( 0.07 1.9( 0.18 1.9( 0.41 1.4( 0.22 1.4( 0.21 1.9( 0.4
carisoprodol 23( 0.068 17( 1.36 18( 7.0 14( 1.96 10( 2 19( 10.8
lamotrigine 26( 2.3 17( 5.1 15( 3.9 14( 2.24 14( 2.52 17( 3.9
buspirone 5.5( 0.88 3.5( 0.31 4.2( 1.1 3.5( 0.56 3.8( 1.29 3.5( 1.1
sulpiride 55( 5.2 38( 6.4 43( 13 36( 4.68 23( 2.99 43( 13

a Sample: a mixture of seven compounds with a wide range of fractions unbound and diverse structures. A concentration of 5µM for each compound
in all the homogenates was used. Dialysis time 20 h; CV from 10 to 30% in most cases.fu% refers to the original tissue after conversion using the eq 1.
Dilution was prepared by 1:3 brain tissue volume:buffer volume to yield 4-times diluted homogenate and so on.
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have a negligible effect onfu. Current results suggest that up to
25 compounds can be pooled and dialyzed and simultaneously
measured, affordingfu values very close to those obtained with
conventional single compound measurements. In addition, a
comparison with fresh and frozen (kept in freezer at-20 °C
for more than 4 months) mouse tissue was conducted using the
same set of pooled compounds resulting in similarfu values
(R2 ) 0.9089,n ) 25). This result, combined with the data
obtained with different batches of tissues, confirms that a robust
and reproduciblefu can be obtained by the sample pooling
approach as long as tissue homogenate samples are appropriately
collected, prepared, and stored. It is worthwhile mentioning that
another distinct advantage of the sample pooling approach is
that fu screening data can be ensured, since the compounds of
interest are always measured along with the reference compound
(in our case propranolol) under the same conditions. As
exemplified in Figure 2 for propranolol, a statistical mean value
from all 26 measurements (fu ) 1.92( 0.47; the lowestfu and
highestfu are 1.3 and 2.8, respectively) from the five different
batches of mouse tissues can be utilized for assay control.

3.5. Comparison of Mouse and Rat Brain Tissue Binding
and Estimation of Tissue Binding.As mouse and rat are the
most frequently used animals for evaluation of in vivo phar-
macological effect, it is interesting to compare whether drugs
bind or partition to mouse and rat brain tissues to different
degrees. Using the sample pooling approach, the unbound
fractions were measured for the same set of compounds in both
mouse and rat brain homogenates. As shown in Figure 3, a tight
correlation (R2 ) 0.9887,n ) 25) of fu between rat and mouse
brain tissues was observed. This result is well in accordance
with the average lipid contents in tissues where the phospholipid
content (fractional content of wet tissue weight 0.0532) and
neutral lipid (0.031) in mouse brain tissue are equivalent to those
in rat brain tissue, i.e., 0.05 and 0.0393,26 supporting the

theoretical nonspecific binding model (eq 4-6). It is worthwhile
noting that similarfu in rat and guinea pig brain tissues has
been observed, although only three compounds were shown.13

This implies thatfu measured in mouse brain tissue can be used
for interpretation of pharmacokinetic and pharmacodynamic data
in the rat. On the basis of the above observation and a general
nonspecific binding mechanism, the fraction unbound in tissue
y (fu-y) can thus be estimated by measuredfu-x in tissuex by
eq 8, which combines the lipid contents in respective tissues.

In order to confirm that the proposed approach is generic
and applicable to various tissues,fu values in adrenal, brain,
lung, and brown fat from rat for two AZ compounds along with
reference compound propranolol were investigated, respectively.
As shown in Table 3, a decrease in lipophilicity results in
increased fractions unbound, which is consistent for all examined
tissues. For all three compounds, the same trend in increase of
fractions unbound was observed from adrenal gland, brain, lung
to brown fat tissues, most likely attributed to the decreased lipid
contents present in the respective tissues. As demonstrated in
Table 3, a good correlation was obtained between measuredfu
in lung tissue and calculatedfu by the proposed eq 8 using
measuredfu in rat brain tissue and fractional phospholipid
contents in both rat brain and lung tissues, revealing that a
nonspecific binding mechanism is driving the partitioning of
drug in tissues by predominated hydrophobic interactions
between drug and lipids. In other terms, such partitioning in a
particular tissue could be estimated by the available lipid content
from the tissues. The current approach will have an important

Figure 2. Correlation offu between single compound measurement and pooled compounds.fu(single) data taken from ref 12.fu(pooling) data
measured in this work by pooling 25 compounds in a single sample. The concentration of each compound is 4µM in the homogenate. Dialysis time
was 4.5 h. Thefu(single) datum for propranolol is the mean value (fu ) 1.92(0.47) of all 26 measurements from five different batches of mouse
brain tissues (the lowest and highestfu observed are 1.3% and 2.8%, respectively), which acts as a reference control for the whole assay.

fu-y )
fu-x

(lipidy

lipidx
) - (lipidy

lipidx
- 1)fu-x

(8)
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implication to a better understanding and development of new
physiologically based pharmacokinetic models (PBPK) by
means of more easily accessible tissue binding data using a
simple estimation approach across species. For the PBPK
modeling, the tissue-blood partitioning coefficients of the drug
in various organs and tissues need to be known.28 Due to limited
availability of fu-tissue data,fu-tissuebinding has been assumed
either by settingfu-tissueas 1 or takingfu-tissue/fu-plasmaratio as
0.5 in the PBPK prediction models.26,29 So far, little is known
about the factors underlying brain tissue binding, and in vitro
and in silico measures are usually necessary due to labor-
intensive and low-throughput in vivo techniques.2 There are few
comparisons between homogenate and slice binding in literature,
but the significant correlation between slice and homogenate
binding has been reported.30 A recent study on 15 diverse
structures has demonstrated a reasonably good correlation
betweenfu in vitro homogenate or slice andfu in vivo using
microdialysis technique.31 These results suggest that the in vitro
binding datafu in brain should be relevant and supportive for
the in vivo estimation of the binding property of drugs in brain.

3.6. Relationship between Fraction Unbound in Tissues
and Molecular Structure. A total of 108 compounds were
employed in order to analyze structure-brain fu relationships

and derive statistical models. These include 25 commercial CNS
compounds as detailed in Table 1 as well as 83 AZ proprietary
compounds, acting at different CNS targets, as shown in Figure
4. The AstraZeneca molecules originated from three different
drug discovery projects and represent sets of close analogues
from seven diverse chemical series.

Simple one-variable analysis shows that there is a good
correlation between unbound brain and plasma fraction values
(r ) 0.78), as outlined in Figure 5. This would suggest that the
mechanisms regulating the fraction unbound in brain homoge-
nate for the compounds analyzed here are mainly nonspecific.
Our result also supports the most often reported values (the ratio
of fu-plasma/fu-tissue≈ 0.5,26). Additionally, as displayed in Figure
6, a strong inverse relationship (r ) -0.78) was observed
between the unbound brain fraction and lipophilicity, as
computed with the Suzuki method.32 Linear fitting would yield
a root-mean-square error (RMSE) in the predictions of 0.6 log
units. The plot indicates that increasing hydrophobicity translates
in a steady decrease of fraction unbound in the brain tissue.
This implies that compounds with ClogPe 3 have an 86%
chance to achieve fractions unbound of at least 1%, whereas
molecules with ClogPg 4 face an 88.6% risk of having brain
fu smaller than 1%. When only the compounds measured in

Figure 3. Consistentfu between rat and mouse brain homogenate. Data obtained from a total of 25 mixed compounds using mouse and rat brain
homogenates (1:3 volume tissue:volume buffer). Dialysis time was 4.5 h. The propranolol is the reference control compound in this work. The
consistence offu brain in both mouse and rat tissues corresponds to the phospholipid contents in the respective tissues.26

Table 3. Measuredfu in Various Rat Organs and Calculatedfu in Lung Tissuea

lipophilicity fu%(measured)

compound k′ (capacity factor) ACDlogD7.4 adrenal gland brain lung brown fat
fu%(cald):b

lung

AZ_1 12.4 3.96 0.0051( 0.0009 0.024( 0.0076 0.11( 0.068 0.17( 0.072 0.074
AZ_2 11.1 3.88 0.25( 0.083 1.0( 0.15 2.2( 0.44 2.8( 0.48 3
propranolol 9.3 1.35 1.0( 0.14 2.1( 0.60 5.3( 0.69 9.7( 1.56 6.2
phospholipid content 0.053c 0.017c

a Rat brain homogenates used were diluted 4 times (1:3 volume tissue:volume buffer) forfu%(measured) (n ) 2). Dialysis time was 20 h. Other tissues
were also from rat with identical homogenization.b Calculation based on the eq 8 using measured rat brainfu and fractional lipid contents in the brain and
lung tissues (only fractional phospholipid content concerned taken into account as an approximation for calculation).c Data taken from ref 26.
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mouse (N ) 70) are considered, the trend between brain fraction
unbound and ClogP is even more evident (r ) -0.87, RMSE
) 0.54 log units). The mouse data further highlight the
physicochemical requirements (ClogP<4) for effective (>1%)
fraction unbound.

The observed trends offer robust prediction offu in brain
tissue. Additionally, they may serve to flag potential problems
in lead series in the early phases of drug discovery projects,
seeking CNS-active compounds. However, the implicit error
in the final predictions would still be on the order of 3-4%
brain fu units. This may clearly pose problems in the late
optimization phase, when more precise predictions are needed
to guide compound prioritization. We thus investigated whether
it was possible to derive more accurate models to predict fraction
unbound in brain, using a set of 70 compounds, for which brain
fu was measured in mice. Different statistical methods accounting
for both linear and nonlinear effects were evaluated, and the
results obtained on the test set observations are reported in Table
4. On the whole, the models had good predictive power, with
r2 values in the 0.74-0.87 range (Table 4). Here, the support
vector machine (SVM) model displayed the highest accuracy
in the predictions, with a RMSE of 0.36 log unit, as shown in
Figure 7. Unsurprisingly, ClogP is the most important parameter
in the model, due to its evident relationship withfu and it seems
to be a more relevant descriptor for the models described in
this work than measured lipophicity logD7.4 obtained from a
LC C-18 column. One could anticipate that an alternative
lipophilicity measure based on immobilized artificial membrane

(phospholipid type) column might improve the correlation with
fraction unbound in brain tissue as it consists of phospholipid
analogues bonded covalently to silica particles, more resembling
the brain tissue matrix. Interestingly, two other structural
descriptors seem to play a substantial role in the final predic-
tions. The number of aromatic atoms has a negative influence
on fu, while the solvent accessible polar surface area is positively
contributing tofu. As the solvent accessible polar surface area
(SAPSA) was found to be positively correlated tofu, introduction
of polar groups in the molecule is likely to increase itsfu.
However, because of their greater accessibility, terminal polar
groups would provide a larger contribution to SAPSA than more
crowded hydrophilic functions. Interestingly, both the number
of aromatic atoms and the solvent-accessible polar area are only
weakly correlated (r < 0.6) to ClogP and, therefore, they might
contribute complementary information to the model.

After the model was derived, eight additional in-house com-
pounds were measured in thefu assay and they offered an addi-
tional prospective test for the SVM model. These molecules
included structural neighbors to compounds in the training set
(N ) 3, Tanimoto distance< 0.3) as well as more diverse chemo-
types (N ) 5, Tanimoto distance> 0.3). Gratifyingly, the errors
in the predictions (RMSE) 0.37 log units) were still compa-
rable to the ones obtained for the first test set (RMSE) 0.36 log
units), suggesting that the SVM model is a robust and accurate
estimator of brainfu. Continual evaluation of the model and
incorporation of new measured data will serve to ensure better
predictive power and adequate coverage of compound space.33

Figure 4. Descriptive statistics for public (N ) 25, cyan columns) and AZ (N ) 83, magenta columns) compounds in the present data set. AZ
compounds spans seven diverse chemical series from three drug discovery projects.

4612 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 19 Wan et al.



4. Conclusions

We have presented a semi-high-throughput method for in vitro
screening of drug brain homogenate binding based on a sample-
pooling approach using equilibrium dialysis combined with
LCMS. This straightforward and robust approach provides a
more efficient way to attain unbound brain exposure for the

interpretation of in vivo pharmacological effects. In addition to
considerably increased throughput, this approach offers other
advantages in terms of timesaving and the reduction of cost
and tissue volume consumption as well as ensured data quality.
We have validated that a set of 25 CNS compounds pooled in
one sample led tofu values in close agreement with conventional

Figure 5. Observed relationship between mouse brain and plasma fractions unbound (N ) 42, r ) 0.78).

Figure 6. Observed relationship betweenfu brain and calculated ClogP3 [N ) 108, r ) -0.78, RMSE) 0.6 log(fu%)]. Colors as in Figure 4.
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single compound measurements, without apparent ion suppres-
sion effect during LCMS bioanalysis. The second important
contribution of this work is that the observed consistentfu in
mouse and rat brain tissues suggests no binding or partitioning
discrepancy for the two commonly used species in vivo due to
the fact that drugs nonspecifically bind mainly to adipose
components such as lipids. On the basis of this finding, the
extent of drug binding to various tissues can be estimated by
the proposed approach utilizing measuredfu from a particular
tissue combined with data on the lipid contents, which will
provide a simple and fast approach for facilitating PBPK
modeling development and validation. Our statistical modeling
indicates a strong relationship between lipophilicity and fraction
unbound. ClogP can be effectively used as a guideline in the
design of compounds with higherfu. Here, molecules with ClogP
> 4 should be treated with caution, as they are very likely to
afford fu less than 1%. On the basis of these findings, a robust
QSAR model is also proposed to aid the fine-tuning offu. In
summary, the proposed new screening method combined with
an in silico approach for the rapid assessments of drug tissue
binding will benefit CNS target projects.
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